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We investigate the effect of local charge detection in an Aharonov-Bohm ring composed of N identical
coupled quantum dots. It is found that the single-electron persistent current of the ring is not fully suppressed
in the limit of perfect charge detection except for the case of N=2. This property is analyzed for a single
electron in the number-state representation. We point out that the nonvanishing persistent current can be
understood in terms of the single-electron entanglement in the number-state representation. In addition, we find
that the local charge detection may produce a finite persistent current even in the absence of the external
magnetic fields.
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I. INTRODUCTION

Quantum decoherence, that is, the emergence of a par-
ticlelike behavior in quantum theory, is a fundamental aspect
in understanding the crossover between the quantum and the
classical world.1 For instance, suppression of interference for
a single particle passing through a two-path interferometer
coupled to its environment2 can be understood either in terms
�i� of path information transferred to the environment or �ii�
of the phase uncertainty resulting from the back action
caused by the environment. These two different interpreta-
tions are mathematically equivalent.2 It has been widely ac-
cepted that the decoherence is inevitably caused by the “dis-
turbance” during the detection process of the environment.

Controlled decoherence in a two-path interferometer is a
nice way to investigate the origin of quantum decoherence. It
has been realized in two-path interferometers with photons,3

atoms,4 and electrons in solid state.5 For an electronic which-
path interferometer,5 Aharonov-Bohm �AB� interferometry
has been used with a quantum dot inserted in an arm of the
two paths while the path detection could be performed by a
quantum point-contact charge detector nearby the quantum
dot. Recently, solid-state interferometry has enabled investi-
gation of this issue by highlighting the role of the path
information.6,7 By adopting a closed-loop AB interferometer
instead of the two paths, it has been confirmed that the role
of information acquisition may be more important than the
“disturbance” caused by the detector.6,7

This electronic quantum decoherence has mostly been in-
vestigated in transport of particles through interferometers:
basically a nonequilibrium phenomenon. On the other hand,
what happens for a system at equilibrium would be an inter-
esting question.8 A good example is a mesoscopic ring with
its size within the phase coherence length.9,10 In this case an
external magnetic flux induces a circulating persistent cur-
rent to the extent that the quantum coherence is preserved.
Various interactions with the environment may induce deco-
herence and suppress the persistent current in the mesoscopic
ring.

In this study, we introduce a controllable decoherence of
the ring by considering a local charge detector. The
Aharonov-Bohm ring is composed of N tunnel-coupled iden-

tical quantum dots. We limit our study to a single electron in
the ring, which is enough to discuss our main observation. To
describe the decoherence source in the ring, we consider a
local charge detector nearby to one of the dots �see Fig. 1�.
The effect of charge detection is formally introduced through
the entanglement between the charge state of a quantum dot
and the detector state. Our main observations are that �1� the
persistent current in the ring is not fully suppressed in the
limit of perfect local charge detection, �2� the behavior of the
persistent current is well described in terms of the entangle-
ment of a single electron in the number-state representation,
and �3� the nonvanishing persistent current under perfect
charge detection can also be understood through the number-
state entanglement.

This paper is organized as follows. In Sec. II, we intro-
duce a mesoscopic ring which consists of N identical quan-
tum dots. We show that the ground state of the ring for a
single electron is the entangled W state11,12 in the number-
state representation. We consider the local charge detection
on one of the quantum dots in Sec. III. Within the formal
approach of local charge detection, the reduced density ma-
trix for the ground state is written in terms of the detection
parameter which represents the strength of the detection. In
Sec. IV, the effect of local charge detection on the persistent
current is discussed. It is shown that local charge detection
can induce a persistent current without applying magnetic

FIG. 1. �Color online� An Aharonov-Bohm ring composed of
N-identical quantum dots. Each quantum dot has a single energy
level. The dot is empty or singly occupied. The electron can move
from a dot to its neighbor dots with tunneling amplitude t. The
Aharonov-Bohm flux � penetrates the ring and induces the persis-
tent current. A local charge detector is placed near the kth quantum
dot and detects the charge of the kth quantum dot.
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fields. Section V is devoted to the discussion of the persistent
current and the effect of the local charge detection in terms
of the single-electron entanglement. Also, we address the
effect of multiple charge detectors. Possible experimental re-
alization is briefly discussed in Sec. VI. Finally, the conclu-
sions are given in Sec. VII.

II. MODEL

The model system under consideration is schematically
drawn in Fig. 1. The N quantum dots are assumed to have the
identical single energy levels and the identical tunnel cou-
pling with its nearest-neighbor quantum dots. This condition
can be achieved by controlling the parameters in the experi-
ment. An external AB flux � threads the ring and is taken
into account in the phase factor of tunnel coupling. The jth
dot �j=1,2 , . . . ,N� is either empty or singly occupied �de-
noted as �0� j and �1� j, respectively, in the number-state rep-
resentation�. With this number-state representation, the ring
Hamiltonian is written as

H = − t�
j=1

N

�e2�i�/N�j + 1��j� + e−2�i�/N�j��j + 1�� , �1�

where t is the hopping matrix element, and �j�
= �0�1�0�2¯ �1� j¯ �0�N corresponds to the state that the elec-
tron is in the jth dot. The periodic boundary condition �N
+1�= �1� is imposed to describe the ring. The phase factor
�=� /�0 comes from the Aharonov-Bohm flux � piercing
the ring where �0=hc /e is the unit flux quantum.

The ground state of Hamiltonian �1� has energy
EN=−2t cos�2�� /N� and the wave function of the form
�for −1 /2���1 /2�

��G� = �
j=1

N
1

	N
�j� =

1
	N

��100¯� + �010¯� + ¯ �00 ¯ 1�� .

�2�

It is interesting to note that this is a single-electron-entangled
state. Further, it is equivalent to the W state11,12 of the N
qubits �denoted as �WN� in the following� in the number-state
representation.

About single-particle entanglement, ambiguous views on
the nature of “particle” have raised a debate based on the
argument that at least two particles are needed to generate an
entangled state.13 However, a recent theoretical study has
shown that nonlocal correlations of single particles can ex-
hibit in a delocalized state.14 Further, its agreement with re-
cent experiments15 has verified the nonlocal nature of a
single-particle-entangled state. Aside from this subtle issue,
we find it useful to introduce the single-particle entangle-
ment for making a quantitative relation between the degree
of entanglement and the amplitude of persistent current.

III. LOCAL CHARGE DETECTOR AND THE REDUCED
DENSITY MATRIX OF THE RING ELECTRON

Suppose that the charge detector is sensitive to the charge
state of the kth dot in the ring, as illustrated in Fig. 1. The

mesoscopic ring may lose its coherence by a local charge
detection on one of the quantum dots. In other words, the
information of charge states of the dot is transferred to the
local charge detector during the charge detection process
and, in turn, the phase coherence of the dot charge state is
lost. Instead of introducing a specific interaction between the
ring and the local charge detector, we employ a �nonspecific
model� formal approach to describe the decoherence �infor-
mation transfer� of the ring. This approach allows us to cap-
ture an essential physics, even though in an experimental
situation the detector states are rather complex and involve
part of the environment surrounding the dot as well.

Before the charge detector obtains the charge information
of the kth quantum dot, the composite system consisting of
the ring and the detector is described by a direct product

��tot� = ��G� � �d� , �3�

where �d� is the detector state. The interaction between the
charge detector and the dot results in an evolution of the
composite system. When the charge detector detects the
charge state of the kth dot in the ring, the two subsystems get
entangled given in the form

��tot� =	N − 1

N
�WN−1

�k� � � �d0� +	 1

N
�k� � �d1� , �4�

where �d0� ��d1�� represents the detector state when the kth
dot is empty �occupied�. �WN−1

�k� �=� j=1�j�k�
N 1 /	N−1 �j� is the

W state of the N−1 quantum dots with the kth dot excluded.
Actually, the states d0 and d1 can formally contain anything
other than the orbital degree of freedom of the ring electron.
In our study, the complexity of the detector states does not
produce any difficulties because the detector affects the
physical properties of the ring only through the overlap inte-
gral �= �d0 �d1�.

The reduced density matrix of the ring is obtained by
making a partial trace of the total density matrix �tot
= ��tot���tot� over the charge detector degree of freedom,

�N��� = Trdet��tot�

=
N − 1

N
�WN−1

�k� ��WN−1
�k� � +

1

N
�k��k� + �

	N − 1

N
�k��WN−1

�k� �

+ H.c. �5�

The parameter � accounts for the effect of the charge detec-
tion. In general, the magnitude of � can have any value be-
tween a perfect detection ��=0� and no detection ����=1�
limit. It plays a similar role as the Feynman-Vernon influence
functional2,16 which is the overlap between two states of the
field that arises from the vacuum in two different trajectories
of a double-slit-like experiment. In the absence of coupling
to the detector �no charge detection�, the two states for the
detector are identical �d0�= �d1�. Then, the reduced density
matrix is just that of the W state of the N qubits, i.e., �N
= ��G���G�. As the charge detector begins to distinguish the
two charge states of the kth dot, ��� becomes smaller than 1.
As a consequence, the coherence between the state �k� and
the other state �WN−1

�k� � is partially lost. Eventually, for a per-
fect charge detection ��=0�, the state of the composite sys-
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tem is given as an incoherent mixture of the two different
charge states for the kth dot,

�N�� = 0� =
N − 1

N
�WN−1

�k� ��WN−1
�k� � +

1

N
�k��k� . �6�

For large N, this incoherent mixture is almost equivalent to a
W state of N−1 quantum dots: �N��=0�
�WN−1

�k� ��WN−1
�k� �.

This implies that a single-electron entanglement can play an
important role for the persistent current in the mesoscopic
ring because the W state of N−1 quantum dots is a coherent
state. In Secs. IV and V, we will discuss the persistent current
in relation to the local charge detection and single-electron
entanglement.

IV. PERSISTENT CURRENT VERSUS LOCAL
CHARGE DETECTION

From the reduced density matrix �N��� in Eq. �5�, the
persistent current IN for an N-dot ring can be evaluated as a
function of the AB phase � and charge detection parameter
�, as

IN��,�� = −
e

h
Tr� �H

��
�N���� = 
1 −

2

N
�IG��� +

2���
N

IG��

+ ��� , �7a�

where IG��� is the persistent current of the ring in the ab-
sence of the charge detector, and ��= �N /2��arg��� is an
additional phase shift induced by the detector. Note that
IG��� is given as

IG��� = −
e

h
Tr� �H

��
��G���G�� = I0 sin�2�

N
�� , �7b�

where the oscillation amplitude is I0=2et /N�.
Several interesting features are found from Eq. �7�. First,

a finite persistent current exists even for �=n� where IG
=0:

IN�� = n�,�� = �− 1�n 2

N
���I0 sin�arg���� . �8�

In the absence of the charge detector, the time-reversal sym-
metry of the ring gives zero persistent current �IG=0� for
�=n� that corresponds to the integer �even n� or half-integer
�odd n� flux quantum. However, this is not the case if the
ring is interacting with an external system. That is, persistent
current may flow even at an integer or half-integer flux quan-
tum if ����0 with arg����0. The additional phase shift in-
duced by the detector breaks �effectively� the time-reversal
symmetry of the ring and gives rise to a finite persistent
current. Interestingly, even for ���=1 the persistent current is
influenced by the phase shift arg���. This implies that the
persistent current allows us to observe the phase variation
between the states �d0� and �d1�. Although it is not clear what
kind of specific detector would display this interesting fea-
ture, it is generally true that this phenomenon happens as far
as the detector can be treated as a single-quantum system.
We believe that further theoretical and experimental studies
are needed to illuminate this issue.

Next, we discuss the persistent current for an arbitrary �
in the limit of perfect local charge detection �=0. It might be
expected that the persistent current disappears once a perfect
local charge detection has been performed. The conventional
viewpoint of decoherence is that external degrees of freedom
�the charge detector in our case� “disturbs” the electron mo-
tion of the ring and would wash out the phase coherence.
However, we find that the quantum coherence of the ring
does not disappear in spite of a perfect local charge detec-
tion. This is clearly shown in the persistent current at the �
=0 limit,

IN��,� = 0� = 
1 −
2

N
�IG��� . �9�

Equation �9� shows that the persistent current for �=0 van-
ishes only for a double-dot ring �N=2�. For N=2, the charge
states for each of the quantum dots are decided by a local
charge detection. Otherwise, the charge detection determines
only the local charge of the kth dot. This is the origin of the
quantum coherence that survives perfect charge detection
and gives a finite persistent current for N	2. In other words,
the local charge detection destroys the coherence of the ring
only partially. This behavior is better understood in terms of
single-electron entanglement in the number-state representa-
tion. �See below.�

V. SINGLE-ELECTRON ENTANGLEMENT AND
PERSISTENT CURRENT

The behavior of the persistent current with local charge
detection can be analyzed in terms of single-electron en-
tanglement. First, let us discuss a double-dot ring N=2,
where the persistent current disappears completely under the
perfect local charge detection. The reduced density matrix of
Eq. �5� is reduced to

�2��� =
1

2
��1��1� + �2��2� + ��2��1� + ���1��2�� . �10�

For an arbitrary two-qubit state, the concurrence is a direct
measure of entanglement.17 In terms of eigenvalues

i�i� �1,2 ,3 ,4�� of the density matrix �̃2=�2�1

y�2
y�2

��1
y�2

y,
the concurrence is defined by C=max�0,	
1−	
2−	
3
−	
4�, where �i

y is a Pauli matrix, and 
1�
2�
3�
4. The
concurrence ranges from zero for an unentangled state to one
for a maximally entangled state. For �2��� of Eq. �10�, we
find that the concurrence is given by C���= ���. Therefore,
the degree of single-electron entanglement ranges from one
to zero, depending on the detection strength. Without detec-
tion ��=1�, the system is in a maximally entangled state,
��G�= 1 /	2 ��10�+ �01��. This corresponds to the single-
electron Bell state. For �=0, the state is reduced to the com-
pletely mixed state. We find that the effect of entanglement is
directly related to the persistent current as

I2��� = C���IG�� + ��� . �11�

Apparently, the persistent current is proportional to the con-
currence. This implies that the single-particle entanglement
is essential in generating a persistent current. Alternatively,
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this property can be understood as follows. The maximally
entangled state in the absence of charge detection corre-
sponds to the maximal quantum fluctuation of the local
charge numbers. These quantum fluctuations of the electron
numbers are expected to give the persistent current. Local
charge detection would suppress the quantum fluctuations of
the number �or the degree of the number-state entanglement�.
A perfect local charge detection leads to the complete sup-
pression of number fluctuations in both quantum dots. Ac-
cording to the number-phase uncertainty, perfect precision of
the number state �for C���=0� implies maximum uncertainty
of the phase of the state. Consequently, the persistent current
disappears for this case.

For N	2, a perfect local charge detection does not fully
suppress the persistent current. In fact, N−1 local charge
detectors are needed to detect all the charges of the dots. In
the absence of charge detection, the electron in the ring is in
the single-electron W state of N quantum dots �WN�
=� j=1

N 1 /	N �j�. Once we observe the states of all N quantum
dots by N−1 local charge detectors, the state of the system
will be in an unentangled mixed state. ��N�0� becomes a
diagonal matrix.� In this case the persistent current vanishes.
Hence, we can understand that the persistent current does not
disappear completely by a single local charge detector since
the detector distinguishes the charge state of the kth dot only.

For N=2 we could understand the behavior of the persis-
tent current in terms of the concurrence. However, for N
	2, a standard measure of the entanglement does not exist.
To understand the behavior of the persistent current for N
	2, it is helpful to introduce the dephasing factor d�

=	Tr��N
2 �.18 In the limit of the complete mixed state, 
N

ij

= �1 /N��ij where the dephasing factor is given by d�

=1 /	N. That is, the dephasing factor of the system ranges
from 1 /	N for a fully decoherent state to 1 for a pure state.
For the density matrix of Eq. �5�, the dephasing factor is
given as

d���� =	1 −
2�N − 1�

N2 �1 − ���� . �12�

We can see that the dephasing factor for �=0, d��0�, is larger
than the lower bound of the dephasing factor 1 /	N for N
	2. �For N=2, d��0� has the lowest value 1 /	2.� This indi-
cates that the quantum coherence of the mesoscopic ring is
not completely destroyed by a local charge detection.

Now, we discuss briefly about effects of more than one
local charge detection in the N quantum dots. For example,
let us discuss the case of independent local detectors. This
assumption allows us to extend our approach to the case of
more than one local charge detector. For simplicity, let us
consider two local charge detectors. As discussed above, the

two local charge detectors detect the charges of only two
dots. For a perfect local charge detection, the electron in the
ring is in an incoherent mixture of a W state of N−2 quantum
dots and two quantum dot states. Compared with the single
detector, the quantum fluctuations of the number would be
suppressed more strongly by the two local charge detections.
Thus, the amplitude of persistent current is more reduced.
For N=3, two local charge detections lead to the complete
suppression of number fluctuations in three quantum dots. In
this case, the persistent current disappears. If one of two
charge detectors is not perfect, the persistent current
survives.

VI. POSSIBLE EXPERIMENTAL REALIZATION

Persistent currents have been measured both in single iso-
lated rings, in ensembles of isolated rings,9 and even in a
relatively complicated structure containing connected
rings.19 Furthermore, electron numbers in lateral quantum
dots made of two-dimensional electron gas can be controlled
down to zero.20,21 Therefore, it is within the state-of-the-art
technology to verify our prediction experimentally. In order
to verify our prediction, at least three quantum dots should
be constructed. The experiment would be more easily real-
ized for a small �but larger than two� number of dots where
the energy-level spacing is much larger than thermal fluctua-
tions.

Actually, there are many decoherence sources in experi-
mental situations for quantum dot qubits. However, a con-
trollable detection operation on charge qubits may give rise
to the qubit decoherence, showing its unique decoherence
property different from other decoherence mechanisms
which are not controllable.

VII. CONCLUSIONS

We have studied the influence of local charge detection on
the persistent current in an Aharonov-Bohm ring composed
of N-quantum dots. The local charge detection does not en-
tirely suppress the persistent current. The nonvanishing per-
sistent current can be understood by analyzing the single-
electron entanglement in the number-state representation.
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